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Effect of the transition of networks from floppy to rigid on the diffusion coefficient
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We investigate a tracer particle moving on a two-dimensional square lattice created by network formers
(NF). The positions of all network formers are randomly displaced by a small amount from the nodes of the
network. Each NF can be in a “floppy” or “rigid” state, depending on the number of bonds connecting it to
neighboring network formers. The NF that have more than a specified number of m bonds are in rigid state, the
remaining ones are in a floppy state. The energy of the tracer particle depends on its distance from those of the
four nearest NF that are in “rigid” state. The NF in floppy state do not contribute to the energy. We here
demonstrate that the a priori increase in the diffusion coefficient with the concentration of the floppy states
goes through a crossover point, after which the increase is much sharper.
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I. INTRODUCTION

For multicomponent systems, the chemical composition
and hence the structure of the ambient melt is very important
for the formation of nanocrystals. This is true, especially if
the melt has a composition that is different from that of the
newly formed crystals. In highly viscous melts, under condi-
tions near the glass transition temperatures, this leads to the
formation of diffusion layers (diffusion of stress deformation
energy, as well as diffusion of chemical components).

Recently, a new approach was suggested: this is a combi-
nation of percolation theory and the classical nucleation
theory [1-4]. This model directly follows from the constraint
counting concepts of Phillips [5,6] and Thorpe [7-9]. It was
shown in [7-9] that the network becomes rigid if the mean
coordination of network formers, (r) exceeds a critical value
r.=2.4. The exact threshold conditions for the rigid/floppy
transition depend on the dimensionality of the space and on
the coordination number, and they are summarized in [10].

The main idea of the present report is to simulate diffu-
sion on a multicomponent system. We investigate diffusion
of relatively fast moving ions. The network formers are im-
peding the motion. If a neighboring network former is
strongly bonded, it is an obstacle increasing the energy of the
investigated tracer. If some of the bonds are “broken,” i.e.,
the number of bonds of the given network former is low
enough, it is in a “floppy” state and can retaliate permitting
the tracer to move without increasing its energy. Thus, the
diffusion coefficient D is expected to depend on the concen-
tration of ion modifiers. We expect a breakpoint concentra-
tion, above which the diffusion coefficient will increase
sharply with the number of broken bonds.
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II. MODEL DESCRIPTION

In the current investigation we consider a tracer particle
moving on a two-dimensional (2D) square lattice, which
consists of network formers (NF) connected by bonds. In
order to move, the tracer has to find open space at the new
position. Therefore, if the concentration of the NF is large,
this may impede the tracer movement. The bonds of each NF
determine how flexible it is in order to yield space for the
tracer. The comparison of the tracer energy at the new and
old positions determines the probability of each successive
jump. If during an attempted move the energy increases, it is
more favorable for the particle to remain at its current posi-
tion, so then the Metropolis algorithm is invoked to decide
whether the particle will move or not. If a fraction of the
bonds is removed, some of the NF could become more flex-
ible and the new positions of the tracer are easier accepted,
resulting in an increase of the mobility. In real systems this is
obtained by introducing network modifiers in the lattice.
They break the bonds that connect the network formers. As
the concentration of the NM increases, it follows that fewer
bonds are present in the network and the tracer can move
easier through it. The removal of the bonds has a drastic
effect on the nature of the network transforming it from rigid
to floppy. Therefore, it is anticipated that the diffusion coef-
ficient will be affected by the network transition. In fact,
although the increase of the diffusion coefficient could be
postulated a priori, the exact mode of increase and the pres-
ence of a crossover could not have been easily assumed.

Calculations are performed on 2D square lattices, on
which the tracer particle moves. The network formers, which
are linked with bonds, are initially placed on the sites of the
lattice. The network is randomized in two ways. First, at time
t=0 we introduce a small random perturbation on all NF, so
that each one of them is displaced to a new position at a
small distance away from the previous one. The orientation
is chosen by a random angle 0° = #§=360°. The distance of
the displacement is also chosen randomly, but it is the inter-
val between 0% and 10% of the lattice constant. In this way
all particles still remain further apart from each other. We
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consider that the bonds between the network formers remain
unchanged. Second, at =0, the network modifiers are intro-
duced to the lattice, breaking a fraction of the bonds. The
network modifiers affect in a straightforward manner the
concentration of the bonds and, therefore, we consider a re-
moval probability, f, according to which we can estimate the
number of the broken bonds, at the beginning of the simula-
tion. If for example, f=0.4, this means that 40% of the initial
bonds will be removed. As f increases, the lattice transforms
from rigid to floppy, and we expect this phenomenon to have
a serious effect on the tracer motion. The tracer particle will
move through the disordered lattice. We study the depen-
dence of the diffusion coefficient on f. At r=0, the tracer
particle is placed at a random position on the lattice. Its
motion will be regulated by the Metropolis algorithm. At
every time step we calculate the energy of the tracer, whose
value is defined by the distances R; to its closest four net-
work formers. At each time step we determine its four closest
neighbors and we count the number of the missing bonds
each one of these neighbors has. We introduce a dimension-
less parameter 0=m =4, and we compare the number of
bonds that a neighboring network former has to the value of
m. If this number is equal or greater to m, then the corre-
sponding NF is “rigid” and does not contribute to the energy
of the tracer. If the number of bonds is smaller than m, then
it is “floppy”” and will contribute to the energy by a factor of
1/R. Here R is defined as the distance between the tracer and
the corresponding NF. The tracer particle is not allowed to
move to a position occupied by a NF and therefore R cannot
be equal to 0. The total energy E; of the tracer particle at its
current position is defined as a sum of the energy contribu-
tions of those of the four neighbors that have at least m
bonds. Once E; is determined, then the particle moves to a
distance equal exactly to one (1) lattice constant and with an
orientation randomly chosen, as previously discussed. We
then calculate the energy E, at the new position, using the
same procedure as for E;. In order to check if the tracer will
move, we implement the Metropolis algorithm. We keep
track of the tracer position at every time step and determine
the mean square displacement. This algorithm is a computer
simulation that resembles the shoving model [11].

Earlier [12-15] we had performed Monte Carlo simula-
tions of diffusion in terms of the activation energy. The
present approach is quite different from the activation energy
models, and rather supplementary to them. This methodol-
ogy of accepting or rejecting the new position is the basic
method to describe crystallization kinetics (see for instance
[16] and the literature cited there), where in addition to the
activation energy term (viscosity there) an additional term
is present accounting whether the step is accepted or re-
jected, and this determines the mechanism of phase transition
kinetics.

III. RESULTS

Calculations are performed on a 2D square lattice of size
1000 X 1000 for 1000 realizations. The time dependence of
the mean square displacement (R?), for several f values and
for m=2, is shown in Fig. 1. As f changes within the range
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FIG. 1. Mean square displacement (R?) as a function of time in
Monte Carlo steps. In all calculations it is m=3, while four f values
are shown. The lines are optical guides.

0=f=1, the network transposes from rigid to floppy, and
the slope of the mean square displacement lines increases. In
fact, for f=0, all bonds are present in the lattice and for
f=1, there is none, and the tracer executes a simple random
walk.

By calculating the slopes of the (R?) vs time lines, we can
determine the corresponding values of the diffusion coeffi-
cient

HR?
D= (R?)
at

(1)

The f dependence of the diffusion coefficient for m=2 is
shown in Fig. 2. For lower values of f the network is in a
rigid state and therefore the tracer particle cannot move eas-
ily. It is obvious that up to a critical point f,., the values of the
diffusion coefficients change at a low rate. Beyond f., the
change is more rapid and the slope is sharper.

Below f., the motion of the tracer is impeded by the large
number of the existing bonds. The neighboring network
formers are expected in this case to have retained most of
their bonds and therefore, they will contribute to the particle
energy. As f grows this contribution will become weaker,

N T T T LI L T
10F m=2 ]
09F ]
08} .

D [ ]
07F ]
0.6 -B- ]

[ ._‘__.—‘l’ fc ]

_a- 1
C | IR Y | IR T T | IR Y | IR R | IR T 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. (Color online) Diffusion coefficient D versus the re-
moval probability f, for the case of m=2. The straight lines are
optical guides.
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FIG. 3. (Color online) Diffusion coefficient D vs the removal
probability f, for several different m values.

allowing the tracer to move easier through the lattice. Al-
though this is evident now from this plot, the quantitative
behavior and in particular the appearance of the critical
threshold justifies the need for this calculation.

As earlier stated, the parameter m stands for the number
of bonds a network former must have, in order to contribute
to the tracer energy. In our simulations, we used different
values of m, as it can be seen in Fig. 3. In fact if m is large,
i.e., m=4, then the critical value f,. will appear for lower f
values, and therefore, the tracer particle is highly kinetic in a
wider range of f values.

It is obvious that at each m value there is a critical con-
centration of broken bonds (critical f, value). At this point,
the network behavior shifts from rigid to floppy. The diffu-
sion coefficient changes fast in the floppy region and its val-
ues are much higher than in the rigid one.

IV. DISCUSSION

The mobility of the tracer particle depends strongly on the
probability that some of its first neighbors are in a floppy
state, namely, that they have less than m bonds. The main
idea is that every monovalent ion “loosens up” one of the
otherwise “strong” bridges between the network formers (for
example these are Si-O-Si bridges in silicate melts). As the
coordination number of Si in silicates is Z=4, the number n
of “loose” bonds can vary between 0 and 4.

In the case of an ideal solution, the concentration Q, of
the network formers with n bonds is given by the binomial
distribution function. It specifies the number of times (n) that
an event occurs in Z independent trials

Qn=m(1—f)”fz " (2)

Correspondingly, the concentration of floppy particles is
z

Qm)=1-2 Q,. (3)

The floppy clusters will percolate if their concentration
Q(m) exceeds the bond percolation threshold p,,
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FIG. 4. (Color online) Concentration Q of the broken bonds
versus the removal probability f.

Q(m) = p,. 4)

This is illustrated in Fig. 4, where the m values are indi-
cated on each curve. It is seen that when the m value is low,
then the diffusivity is rather low too (as it was also shown in
Fig. 4).

The solid line at 0.5 is the percolation threshold p,. for the
bond percolation. The intersection points with the corre-
sponding curves give the f, values at which the diffusion
coefficient D changes faster. In Fig. 5 these f,. values are
plotted versus m, together with the threshold values deter-
mined from Figs. 2 and 3.

It is obvious that there is a coincidence between the the-
oretical values and the ones acquired by the Monte Carlo
simulation.

V. CONCLUSIONS

We study the transition of a network from a rigid state to
a floppy one and we investigate how this process affects the
diffusion coefficient of a tracer particle. A disordered square
lattice is assumed, which consists of network formers that are
connected with each other through bonds. The concepts of
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FIG. 5. (Color online) Critical value of the removal probability,
fe versus the parameter m. The solid squares correspond to the
theoretical values from the intersections in Fig. 4, while the open
ones to the results of simulations acquired from Figs. 2 and 3.
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rigidity and floppiness are examined by means of two param-
eters, namely, f, which is the bond removal probability, and
m, which stands for the upper limit of a number of bonds that
a NF must have in order to be treated as floppy. The number
of bonds that are present in the system is determined by f,
and as f increases the transition of the system from rigid to
floppy takes place. This change happens in a sharp tranistion,
as shown in Fig. 2, being characterized by a crossover value,
f.. Moreover, the tracer mobility, described by the diffusion
coefficient, increases sharply after f,.. Therefore, the tracer
particle can move easier as f increases. This pattern is iden-
tical for the four different values of m (m=1,2,3,4), but it
can be easily seen that the threshold concentration f, strongly
depends on each value of m. In fact, the larger the value of
m, the lower is the value of f at which the crossover is
observed. This result is also theoretically confirmed, by
means of the percolation theory.
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In real glass forming systems, simulated by network
formers and modifiers, it is expected that above the critical
concentration f,, the ions (i.e., BaZtin a glass with the com-
position 1.88Na,0-15.04K,0-7.52A1,05-69.56Si0, - 6BaF,,
Ref. [17]) will be extremely kinetic. Therefore, since the
system will be in a floppy state, it will be highly improbable
to confine the ions in a certain region and hence initialize the
crystallization process. Future plans include the simulation
of several processes, such as crystallization and nucleation of
nanocrystals within a glass material, based on the idea of the
rigid/floppy transition. One may need to introduce a large
density of particles and to take into account their interactions
throughout the whole f range.
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